The Wide Area Augmentation System (WAAS) is an air navigation aid developed by the Federal Aviation Administration to augment the Global Positioning System (GPS), with the goal of improving its accuracy, integrity, and availability. Essentially, WAAS is intended to enable aircraft to rely on GPS for all phases of flight, including precision approaches to any airport within its coverage area.
WAAS uses a network of ground-based reference stations (Benchmark DGPSRs transmitting differential corrections (DCs, located within spaces protected from the public inside airportsin North America and Hawaii, to measure small variations in the GPS satellites' signals in the western hemisphere. Measurements from the reference stations are routed to master stations, which queue the received DCs and send the correction messages to geostationary WAAS satellites in a timely manner (at least every 5 seconds or better). Those satellites broadcast the correction messages back to Earth, where WAAS-enabled GPS receiver uses the corrections while computing its position to improve accuracy. The longer any given DC has been delayed, the less benefit it will produce.
The International Civil Aviation Organization (ICAO) calls this type of system a Satellite Based Augmentation System (SBAS). Europe and Asia are developing their own SBASs, the Indian Gagan, the European Geostationary Navigation Overlay Service (EGNOS) and the Japanese Multi-functional Satellite Augmentation System (MSAS), respectively. Commercial systems include StarFire and OmniSTAR.
WAAS uses a network of ground-based reference stations (Benchmark DGPSRs transmitting differential corrections (DCs, located within spaces protected from the public inside airportsin North America and Hawaii, to measure small variations in the GPS satellites' signals in the western hemisphere. Measurements from the reference stations are routed to master stations, which queue the received DCs and send the correction messages to geostationary WAAS satellites in a timely manner (at least every 5 seconds or better). Those satellites broadcast the correction messages back to Earth, where WAAS-enabled GPS receiver uses the corrections while computing its position to improve accuracy. The longer any given DC has been delayed, the less benefit it will produce.
The International Civil Aviation Organization (ICAO) calls this type of system a Satellite Based Augmentation System (SBAS). Europe and Asia are developing their own SBASs, the Indian Gagan, the European Geostationary Navigation Overlay Service (EGNOS) and the Japanese Multi-functional Satellite Augmentation System (MSAS), respectively. Commercial systems include StarFire and OmniSTAR.